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 The random distribution of discrete steel fibers in concrete and their negative impact on 

workability limit their use in the concrete industry. This research presents a novel 

approach to concrete reinforcement using continuous steel fibers to overcome the above 

mentioned limitations. Three innovative composites were developed, namely, double 

inline-continuous steel fiber reinforced concrete (DI-CSFRC), single inline-continuous 

steel fiber reinforced concrete (SI-CSFRC), and single staggered-continuous steel fiber 

reinforced concrete (SS-CSFRC). Steel reinforced beam and discrete steel fibers 

reinforced concrete beam (DSFRC) beam were fabricated and considered as control 

specimens. The results showed that replacing discrete steel fibers with continuous steel 

fibers significantly enhanced the mechanical performance. At a constant fiber volume 

fraction (0.4%), the cracking and ultimate loads of DI-CSFRC beam were 145% and 

105% higher than that of DSFRC beam, respectively. The implementation of continuous 

steel fibers also offered cost and weight benefits, making it a promising alternative for 

concrete reinforcement.  
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1. INTRODUCTION 

Conventional reinforcement in concrete improves its 

structural behavior, but it is the most expensive part of the 

reinforced concrete, either in terms of material cost or cost 

of installation process. Discontinuous steel fibers were used 

in discrete form for reinforcing concrete, where a large 

number of previous investigations confirmed the 

reinforcing effect of fibers [1-2]. The interest in fiber 

reinforced concrete (FRC) began in the early 1960s [3]. 

Over the last few decades, a lot of literatures have been 

carried out to investigate the efficiency and benefits of FRC. 

Polyethylene fibers, steel fibers, glass fibers, polypropylene 

fibers, polyvinyl alcohol fibers, polyester fibers, basalt 

fibers, and natural fibers are some examples of discrete 

fibers used in literature [4-12]. Steel fiber is the most 

popular fiber utilized in the concrete manufacture. Discrete 

steel fibers were added to concrete in many forms such as 

hooked end, crimped, and round discrete steel fibers [13]. 

The important role of steel fibers is to decrease the 

developments of micro cracks [14]. 
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Despite the above mentioned benefits of fibers, there are 

several drawbacks associated with fibrous concrete which 

limit its use in many applications. The major drawback is 

the low workability of FRC, such that considering high 

levels of both fibers aspect ratio and fibers volume fraction 

in concrete leads to a significant decrease in its workability. 

Khaloo et al. [15] studied the relationship between of steel 

fibers volume fraction and the workability of self-

compacted concrete (SCC). The effect of four volumetric 

ratios 0.5, 1, 1.5, and 2% of fibers were investigated. It was 

found that increasing the amount of fibers reduced the 

workability of SCC. Bajgirani et al. [16] investigated the 

influence of steel fiber aspect ratio on the concrete 

workability. Three levels of aspect ratios (50, 92, and 114%) 

were considered in the experimental program. They 

concluded that increasing steel aspect ratio led to a 

significant reduction in the concrete workability. 

Workability of FRC is, however, not the only technological 

requirement for application in concrete industry. The 

addition of steel fiber in concrete reduces its pumpability 

and sprayability, which limits its application in one of the 

largest application of concrete industry, i.e. the tunnel 

industry. 

The random distribution of discrete steel fibers decreases 

the efficiency when compared to steel bars. Recent studies 

have been conducted on the fibers distribution in concrete 

to increase their benefits. The importance of fiber 

orientation in improving the mechanical behavior steel 

fiber reinforced concrete (SFRC) was emphasized. Better 

distribution of steel fibers results in a significant 

improvement in the concrete mechanical behavior [17, 26]. 

Various orientation processes for discontinuous fibers were 

reported in previous literature [27-31]. The majority of the 

suggested positioning approaches use either the pneumatic 

technology or the hydrodynamic to align discrete fibers. 

Converging jet flow and a modified papermaking 

techniques have been developed with positive results 

obtained. 

1.1. Research Significance 

While, numerous researches investigated the effect of 

discrete steel fiber (DSF) on concrete behavior, no 

literature has been found on using continuous steel fibers in 

concrete. Therefore, the objective of this research is to 

investigate reinforcing of concrete using continuous steel 

fibers to overcome the above mentioned limitations of DSF 

and to increase the efficiency of FRC. The specified 

purposes of the present work were set as follows: 

1. To examine the performance of three innovative 

concrete-based composites namely, single 

staggered-continuous steel fiber reinforced 

concrete (SS-CSFRC), single inline-continuous 

steel fiber reinforced concrete (SI-CSFRC), and 

double inline-continuous steel fiber reinforced 

concrete (DI-CSFRC).  

2. To investigate the feasibility of replacing DSF 

with continuous steel fibers.  
 

2. EXPERIMENTAL PROCEDURE 

2.1. Materials 

Silica fume (SF) and ordinary Portland cement (CEM I, 

52.5 grade) complying with ES: 4756-1 [32] were used. 

Surface area of CEM I and SF were 0.37 and 2 m2/g, 

respectively. Table 1 presents the physical and chemical 

characteristics of cement and SF. Sand complying with 

ASTM C33 [33] was used. Specific gravity and fineness 

modulus of sand were 2.65 and 2.75 respectively. Crushed 

dolomite stone of a maximum nominal aggregate size of 10 

mm was considered. Viscocrete 3425 with a relative 

density of 1.13 was used to produce self-compacted 

concrete. Mild steel of 240 MPa yield strength was used for 

stirrups and longitudinal reinforcement of steel reinforced 

beam. Continuous and discrete round corrugated steel 

fibers of 210 GPa young’s modulus and 1 GPa yield 

strength were purchased from Nassar Group, Egypt. A 

photo of the used continuous and discrete steel fibers is 

shown in Fig.1. 

Table 1 

Chemical analysis and surface areas of CEM I and SF 
Oxide CEM I SF 

SiO2 21.2 96.1 

Al2O3 4.53 0.5 

Fe2O3 3.61 0.71 
CaO 61.6 0.22 

MgO 2.38 0.47 

Na2O 0.36 0.32 
K2O 0.22 0.48 

SO3 2.8 0.1 

Fig. 1. Continuous steel fiber and discrete steel fibers. 

Length (L): 30 mm (+/- 3 mm) for discrete steel fibers and 

500 mm (+/- 3 mm) for continuous steel fibers, Diameter 

(D): 1 mm (+/- 0.05 mm), Wave Length (WL): 6 mm - 8 

mm, Wave Height (WH): 1.5 mm - 2.0 mm 

2.2. Mixing, concrete properties, and reinforcement 

details 

The target compressive strength of concrete was 30 MPa. 

Self-compacted concrete (SCC) was considered throughout 

this work. The dry constituents (cement, silica fume, sand, 

and dolomite) were mixed in a concrete mixer for 2 

L 

WL 

WH D 
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minutes, then tap water and Viscocrete 3425 were added to 

the concrete mixer and mixed for another two minutes. Mix 

proportions of SCC are listed in Table 2. 

 

Beams of size 100 mm × 100 mm × 500 mm were used for 

flexural test. A total of five simply supported concrete 

beams were fabricated and tested, as shown in Fig. 2. Three 

beams were fabricated to examine the mechanical behavior 

of the newly developed composites namely, DI-CSFRC, 

SI-CSFRC and SS-CSFRC. In order to determine the 

feasibility of using these composites, DSFRC and steel 

reinforced beams were fabricated and considered as a 

control specimens.  

2.3. Installation of continuous steel fibers  

In the presented innovative technique, continuous steel 

fibers were fixed using two side wooden plates as shown in 

Fig. 3. A number of holes with a diameter of 3 mm is 

drilled through the wooden plates provided that the distance 

between the holes in the vertical and horizontal directions 

is 1.5 cm. Continuous steel fibers are passed through the 

opposite holes of the two wooden plates in the longitudinal 

direction of the concrete beam, with two continuous steel 

fibers for each hole. The continuous steel fibers are fixed to 

the wooden plates by screws before concrete is poured. The 

demolded SI-CSFRC beam is shown in Fig. 4. 

 
Fig. 2. Cross-sectional details of (a) Double Inline-Continuous 

Steel Fiber Reinforced Concrete (DI-CSFRC), (b) Single Inline-

Continuous Steel Fiber Reinforced Concrete (SI-CSFRC), (c) 

Single Staggered-Continuous Steel Fiber Reinforced Concrete 

(SS-CSFRC), (d) Steel Reinforced Concrete, and (e) Discrete 

Steel Fiber Reinforced Concrete (DSFRC). All dimensions are in 

mm. 

 
Fig. 3. (a) Sketch and (b) photo of installation of continuous steel 

fibers of SI-CSFRC beam. (1) Continuous steel fibers, (2): 

clamping screws, (3) steel mold, and (4) perforated wooden plate. 

 

 
Fig. 4. Demolded single inline-continuous steel fiber reinforced 

concrete (SI-CSFRC) beam. 

 

2.4. Testing technique and procedure 

Flexural testing of all beams was carried out using ELE 

machine of 2000 kN maximum load. Test setup and 

instrumentation for flexural specimens are shown in Fig. 5. 

 

 
Fig. 5. Experimental set-up and two-point loading arrangement, 

all dimension in mm. 

 

 

Table 2 

Mix Proportions 

CIM I 

kg 

SF 

kg 

W/C 

ratio 

Water 

kg 

Dolomite 

kg 

Sand 

kg 

S.P. 

kg 

475 25 0.4 200 590 1100 2 
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3. Results and Discussion 

3.1. Load to mid-span deflection 

The experimental load to mid-span deflection curves of DI-

CSFRC, SI-CSFRC, SS-CSFRC, DSFRC, and steel 

reinforced beams are shown in Fig. 6. The values of 

cracking and ultimate loads of these beams are listed in 

Table 3. It can be concluded from Fig. 6 and Table 3 that 

the steel reinforced beam showed the highest ultimate loads, 

while the DSFRC beam showed the lowest ultimate loads. 

The ultimate loads of steel reinforced beam, DI-CSFRC, 

SI-CSFRC, SS-CSFRC, and DSFRC beams were found to 

be 20.5 kN, 19.5 kN, 15.4 kN, 12 kN, and 9.5 kN 

respectively. The ultimate loads were reduced by 5%, 25%, 

41%, and 54% in case of DI-CSFRC, SI-CSFRC, SS-

CSFRC, and DSFRC beams, respectively, compared to 

steel reinforced beam. On the other hand, it is clear from 

the results shown in Fig. 6 and Table 3 that, replacing 

discrete steel fibers with double inline continuous steel 

fibers (DI-CSF), single inline continuous steel fibers (SI-

CSF), and single staggered continuous steel fibers (SS-CSF) 

increases the ultimate load by 105%, 62%, and 26%, 

respectively, compared to DSFRC beam.  

Moreover, at ultimate load, steel reinforced beam and 

DSFRC beam showed the highest and the lowest mid-span 

deflections 11.2 mm and 4.6 mm, respectively, when 

compared with other beams. Mid-span deflection at 

ultimate load of DI-CSFRC, SI-CSFRC, SS-CSFRC, and 

DSFRC beams reached about 95%, 94%, 73%, and 41%, 

respectively, of the corresponding load of steel reinforced 

beam.   

 

Fig. 6. Load – deflection behavior of (a) steel reinforced beams, 

(b) DI-CSFRC, (c) SI-CSFRC, (d) SS-CSFRC, and (e) DSFRC 

beams. 

Table 3 
Cracking and ultimate loads of all tested beams 

Composite Type Cracking Load (kN) Ultimate Load (kN) 

Steel reinforced beam 17.2 20.5 

DI-CSFRC 16.4 19.5 

SI-CSFRC 13.5 15.4 

SS-CSFRC 8.5 12 

DSFRC 6.7 9.5 

3.2. Crack Pattern 

Crack patterns of all tested beams are shown in Fig. 7. 

Overall, all beams failed in flexure. The failure began with 

vertical cracks near to the center of beams. For DSFRC 

beam, another inclined crack appeared near to the tension 

zone. As shown in Table 3, steel reinforced beam and 

DSFRC beam showed the highest and lowest cracking 

loads, respectively. Cracking loads of DI-CSFRC, SI-

CSFRC, SS-CSFRC, and DSFRC beams reached about 

90%, 74%, 47%, and 45%, respectively, of the 

corresponding load of steel reinforced beam.  Using DI-CSF, 

SI-CSF, and SS-CSF increases the cracking load by 145%, 

101% and 27%, respectively, compared to DSFRC beam. 

The improvement in the mechanical properties of DI-

CSFRC, SI-CSFRC, SS-CSFRC beams when compared 

with DSFRC beam can be attributed to the replacement of 

discrete steel fiber with continuous steel fibers which solve 

the problem of random distribution of discrete steel fiber 

and hence increases its the efficiency in concrete. 

 
Fig. 7. Crack pattern of (a) steel reinforced beams, (b) DI-

CSFRC, (c) SI-CSFRC, (d) SS-CSFRC, and (e) DSFRC beams. 

 

3.3. Feasibility of the new developed composites 

The results shown in Fig. 6 promote the DI-CSFRC to be 

used as a new technique for concrete reinforcement and 

therefore the feasibility of such technique is checked as 

follows. The ultimate load and weight and steel for the 

considered beams are listed in Table 4. Although the DI-

CSFRC has an ultimate load of 19.5 kN, which is very 

close to that of the steel reinforced beam (20.5 kN), the 

weight of the continuous steel fibers used in DI-CSFRC is 

almost one-fifth of the weight of steel bars in the reinforced 

concrete beam, as shown in Table 4. Therefore replacing 
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steel bars in reinforced concrete beam with continuous steel 

fibers saves money and reduces the own weight of fibers, 

resulting in a significant lower dead load. 

 

Moreover, at a constant fiber volume fraction (0.4%), DI-

CSFRC beam showed a better flexural behavior when 

compared with DSFRC beam. The ultimate loads of DI-

CSFRC and DSFRC beams are 19.5 and 9.5 kN, 

respectively. So, it was generally concluded that using 

continuous steel fiber is a very promising technique for 

concrete reinforcement and concrete industry. Also, 

continuous steel fibers can be a good replacement of both 

discrete steel fibers and steel bars due to the following: (1) 

light weight, (2) cost, (3) corrosion resistance by 

electroplating of the fibers, (4) workability, (5) pumpability, 

and (6) applicability in narrow beams. Further research 

should be done to investigate the influence of fibers 

diameter, material, shape, and density on the strength of the 

concrete. 

Table 4 

Comparison between cost and weight of steel bars, continuous 

steel fibers, and discrete steel fibers 

Type 
Ultimate load 

(kN) 

Fiber volume 

fraction (%) 

Weight of steel 

(Kg) 

Steel 

reinforced 

beam 

20.5 - 0.77 

DI-CSFRC 19.5 0.4 0.154 

SI-CSFRC 15.4 0.2 0.077 

SS-CSFRC 12 0.1 0.04 

DSFRC 9.5 0.4 0.154 

 

4. CONCLUSION 

The major conclusions of the research can be outlined as 

follow:  

1. Replacing DSF with double or single inline-

continuous steel fibers improved in the mechanical 

behavior of concrete beams. The cracking and 

ultimate loads of DI-CSFRC beam increased by 

approximately 145% and 105%, respectively, 

compared to DSFRC beam. These values were 

about 101% and 62 % for SI-CSFRC. 

2.  In addition to the improvement in the flexural 

behavior DI-CSFRC beam but also the price and 

weight of continuous steel fibers are almost a 

quarter and one fifth, respectively of steel bars in 

reinforced concrete beam.  

3. At a constant fiber volume fraction (0.4%), the 

cracking and ultimate loads of DI-CSFRC beam 

were 145% and 105% higher than that of DSFRC 

beam, respectively.  

4. DI-CSFRC beam showed the lowest reduction in 

load carrying capacity (5%), followed by SI-

CSFRC beam (25%), compared to the steel 

reinforced beam. 

5. Mid-span deflection, at ultimate load, of DI-

CSFRC, SI-CSFRC, SS-CSFRC, and DSFRC 

beams reached about 95%, 94%, 73%, and 41%, 

respectively, of the corresponding load of steel 

reinforced beam. 

6. Replacing steel bars in reinforced concrete beam 

with continuous steel fibers saves money and 

reduces the own weight of fibers and therefore 

much less dead load. 

List of abbreviations 

DSFRC Discrete steel fiber reinforced concrete 
DSF Discrete steel fiber 
DI-CSFRC Double inline-continuous steel fiber reinforced 

concrete 
DI-CSF Double inline-continuous steel fiber  
SI-CSFRC Single inline-continuous steel fiber reinforced 

concrete 
SI-CSF Single inline-continuous steel fiber  
SS-CSFRC Single staggered-continuous steel fiber reinforced 

concrete 
SS-CSF Single staggered-continuous steel fiber  
FRC Fiber reinforced concrete 
SCC Self-compacted concrete 
SFRC Steel fiber reinforced concrete 
FRP Fiber-reinforced polymer 
CFRP Carbon fiber-reinforced polymer 
GFRP Glass fiber-reinforced polymer 
AFRP Aramid fiber-reinforced polymer 
BFRP Basalt fiber-reinforced polymer 
SF  Silica fume 
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